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Abstract

Longitudinally polarized piezoelectric ceramic disks with central holes have been the most commonly
used elements in underwater acoustics and ultrasonics. For very thin piezoelectric ceramic disks, its
vibration can be regarded as one-dimensional thickness extensional vibration, or plane radial vibration, and
the coupling between these two different vibrational modes is neglected. However, for practical
piezoelectric ceramic disks with central holes, the geometrical dimensions do not satisfy the requirements
for the thin ring, and the coupling must be considered. In this paper, the coupled vibration of the
longitudinally polarized piezoelectric ceramic disks with central holes is studied using an approximate
analytical method. When the mechanical coupling coefficient is introduced and the shearing strain is
ignored, the coupled vibration of the piezoelectric ceramic hollow cylinder is divided into two equivalent
vibrations. One is the equivalent longitudinal extensional vibration, and the other is the equivalent radial
vibration. These two equivalent vibrations are not independent; they are correlated together by the
mechanical coupling coefficient. The equivalent circuit for the piezoelectric ceramic hollow cylinders in
coupled vibration is derived, and the resonance frequency equations are obtained. Based on the coupled
frequency equations, the longitudinal and radial resonance frequencies can be obtained when the
dimensions and the material parameters are given. Compared with one-dimensional theory, the computed
resonance frequencies in this paper are in good agreement with the measured results. Compared with the
numerical methods, the analytic method presented in this paper is simple in computing the longitudinal and
radial resonance frequencies and in analyzing the coupled vibrational modes of the piezoelectric ceramic
disks with central holes.
r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Longitudinally polarized piezoelectric ceramic elements, such as disks, rings, cylinders with
central holes are the important electromechanical transformation elements in sandwiched
piezoelectric transducers used for underwater acoustics and ultrasonics. The vibration analysis
theory of the piezoelectric ceramic thin disks or slender cylinders based on one-dimensional theory
has been well established [1,2]. The coupled vibration of the piezoelectric ceramic disk, hollow
cylinder whose wall thickness is much less than its average radius was also studied in previous
works [3–7]. However, when the diameter and the thickness of the disk and the hollow cylinder
become comparable with each other, the vibration of the elements is a complex coupled vibration.
Numerical methods [8–11] have been used to study the coupled vibration of the piezoelectric
ceramic elements. In our previous studies, the coupled vibration of the piezoelectric ceramic thick
circular and the rectangular plates have been analyzed using an approximate analytical method
[12–16]. In this paper, on the basis of the piezoelectric equations and wave equations, when the
shearing strain is ignored, the three-dimensional coupled vibration of the longitudinally polarized
piezoelectric ceramic hollow cylinder whose height and thickness are comparable with its radius is
studied analytically. The equivalent circuit of the piezoelectric ceramic hollow cylinder in coupled
vibration is obtained, and the resonance frequency equations of the piezoelectric ceramic hollow
cylinder in axially symmetric vibration are derived that can be used to compute the longitudinal
and radial resonance frequencies. The analytic method presented in this paper can be used to
analyze the coupled vibration of other piezoelectric elements.

2. Equivalent circuit of the piezoelectric ceramic hollow cylinder in three-dimensional coupled

vibration

The piezoelectric ceramic element with which we will be concerned is a hollow cylinder as
shown in Fig. 1. In the figure, the height l is comparable with the outside radius a; and there will
be no restriction on the inside radius b: In the figure, Fz1;Fz2 are the longitudinal external forces,
Fra;Frb are the external forces acting on radial surfaces of the cylinder; vz1; vz2; vra; vrb are the
velocities at the boundaries of the cylinder. The polarization direction is along the height of the
hollow cylinder and the external exciting electric field is parallel to the polarization direction. In
cylindrical co-ordinates, the three-dimensional motion equations for the cylinder in coupled
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Fig. 1. Geometrical diagram of a piezoelectric ceramic hollow cylinder.
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vibration are
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where r; y; z are the cylindrical co-ordinates; xr; xy; xz are the three displacement components;
Tr;Ty;Tz;Try;Trz;Tyz are the stress components in the piezoelectric ceramic cylinder. The
relationship between the strain and the displacement are as follows:
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Here, Sr;Sy;Sz;Sry;Syz;Srz are the strain components. It can be seen that for three-dimensional
coupled vibration, the wave equations are complex, and the analytic solution is almost impossible
if no assumptions are made. Although numerical methods can be used to analyze the coupled
vibration of resonators, large special software must be used. In the following analysis, some
assumptions are made to simplify the mathematical analysis of the coupled vibration of the
piezoelectric ceramic hollow cylinder and an approximate analytic method is presented, which
proves not only concise in physical concept, but also simple and time-saving in the calculation of
the resonance frequency of the resonator in coupled vibration.
From Fig. 1, it can be seen that as the polarization direction is parallel to that of the electric

field, the vibration of the hollow cylinder can be regarded as a coupled one of longitudinal and
radial extensional vibrations approximately; therefore shearing and torsion stress and strain can
be ignored. In cylindrical coordinates, when the edge effect of the electric field is ignored, we have

E1 ¼ E2 ¼ 0; E3a0; D1 ¼ D2 ¼ 0; D3a0; Try ¼ Trz ¼ Tyz ¼ 0; Sry ¼ Srz ¼ Syz ¼ 0: ð6Þ

Here, E1;E2; and E3 are components of the electric field in the r; y; and z directions, D1;D2; and D3

are components of the electric displacement. Using Eq. (6), the piezoelectric constitutive equations
can be reduced to the following form:

Sr ¼ sE
11Tr þ sE

12Ty þ sE
13Tz þ d31E3; ð7Þ

Sy ¼ sE
12Tr þ sE

11Ty þ sE
13Tz þ d31E3; ð8Þ

Sz ¼ sE
13Tr þ sE

13Ty þ sE
33Tz þ d33E3; ð9Þ

D3 ¼ d31Tr þ d31Ty þ d33Tz þ eT
33E3: ð10Þ

In these equations, sE
ij is the elastic compliance constants measured at constant electric field, d31

and d33 are the piezoelectric strain constants, and eT
33 is the dielectric constant measured at

constant stress. For axis-symmetrical coupled vibration of the piezoelectric ceramic cylinder, we
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have xy ¼ 0; @xy=@y ¼ 0; @Ty=@y ¼ 0: The equations of motion can be reduced to the following
form:

r@2xr=@t2 ¼ @Tr=@r þ ðTr � TyÞ=r; ð11Þ

r@2xz=@t2 ¼ @Tz=@z; ð12Þ

Sr ¼
@xr

@r
; Sy ¼

xr

r
; Sz ¼

@xz

@z
: ð13Þ

2.1. Equivalent circuit for the equivalent radial vibration of the piezoelectric hollow cylinder in
coupled vibration

From Eqs. (7) and (8), we have

Sr � Sy ¼ ðsE
11 � sE

12Þ ðTr � TyÞ; ð14Þ

Sr þ Sy ¼ ðsE
11 þ sE

12Þ ðTr þ TyÞ þ 2d31E3 þ 2sE
13Tz: ð15Þ

Let n ¼ Tz=ðTr þ TyÞ; n is defined as the mechanical coupling coefficient. From Eqs. (14) and (15),
we have

Tr � Ty ¼
Sr � Sy

sE
11 � sE

12

; ð16Þ

Tr þ Ty ¼
Sr þ Sy � 2d31E3

sE
11 þ sE

12 þ 2sE
13n

: ð17Þ

Using Eqs. (16) and (17), we can obtain the radial stress Tr as follows:

Tr ¼
Sr � Sy

sE
11 � sE

12

þ
Sr þ Sy � 2d31E3

sE
11 þ sE

12 þ 2sE
13n

� ��
2: ð18Þ

Substituting Eqs. (13), (16), and (18) into wave equation (11) yields the radial equivalent wave
equation of motion

rð@2xr=@t2Þ=Er ¼ @2xr=@r2 þ ð@xr=@rÞ=r � xr=r2: ð19Þ

In Eq. (19),

Er ¼
sE
11 þ sE

13n

ðsE
11 � sE

12Þðs
E
11 þ sE

12 þ 2sE
13nÞ

¼
1� n13n

sE
11ð1þ n12Þð1� n12 � 2n13nÞ

;

and Er is defined as the radial equivalent elastic constant of equivalent radial vibration of the
piezoelectric ceramic hollow cylinder. n12 ¼ �sE

12=sE
11; n13 ¼ �sE

13=sE
11: In the above transforma-

tions, @E3=@r ¼ 0 is used. For simple harmonic motion, xr ¼ xra expðjotÞ; the radial wave
equation becomes

d2xra=dr2 þ ðdxra=drÞ=r � xra=r2 þ k2
rxra ¼ 0; ð20Þ

where kr ¼ o=Vr; Vr ¼ ðEr=rÞ
1=2; kr and Vr are called the radial equivalent wave number and the

radial equivalent sound speed, and o is the angular frequency. Eq. (20) is a Bessel’s equation of
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the first order that has the solution

xra ¼ ArJ1ðkrrÞ þ BrY1ðkrrÞ; ð21Þ

where J1ðkrrÞ and Y1ðkrrÞ are Bessel functions of the first and second kind. Ar and Br are two
constants that can be determined by the boundary conditions. From Eq. (21), the equivalent
radial velocity amplitude can be obtained as

vr ¼ jo½ArJ1ðkrrÞ þ BrY1ðkrrÞ�: ð22Þ

From Fig. 1, we have

vrjr¼a ¼ �vra; vrjr¼b ¼ vrb: ð23Þ

Substituting Eq. (22) into Eq. (23), after some transformations, the constants Ar and Br can be
obtained as

Br ¼
1

jo
vraJ1ðkrbÞ þ vrbJ1ðkraÞ

J1ðkraÞY1ðkrbÞ � J1ðkrbÞY1ðkraÞ
; ð24Þ

Ar ¼ �
1

jo
vraY1ðkrbÞ þ vrbY1ðkraÞ

J1ðkraÞY1ðkrbÞ � J1ðkrbÞY1ðkraÞ
: ð25Þ

Substituting Eqs. (24) and (25) into Eq. (21) and then into Eqs. (13) and (18) yields the expression
of the equivalent radial stress

fJ1ðkrbÞ½krY0ðkrrÞðsE
11 þ sE

13nÞ �Y1ðkrrÞðsE
11 þ sE

12 þ 2sE
13nÞ=r�

Tr ¼ vra

�Y1ðkrbÞ½krJ0ðkrrÞðsE
11 þ sE

13nÞ � J1ðkrrÞðsE
11 þ sE

12 þ 2sE
13nÞ=r�g

jo½J1ðkraÞY1ðkrbÞ � J1ðkrbÞY1ðkraÞ�ðsE
11 � sE

12Þðs
E
11 þ sE

12 þ 2sE
13nÞ

fJ1ðkraÞ½krY0ðkrrÞðsE
11 þ sE

13nÞ �Y1ðkrrÞðsE
11 þ sE

12 þ 2sE
13nÞ=r�
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11 þ sE
13nÞ � J1ðkrrÞðsE

11 þ sE
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11 � sE
12Þðs

E
11 þ sE

12 þ 2sE
13nÞ

�
d31E3

sE
11 þ sE

12 þ 2sE
13n

: ð26Þ

From Fig. 1, we have

Fra ¼ �Trjr¼aSa; Frb ¼ �Trjr¼bSb: ð27Þ

Here, Sa ¼ 2pal; Sb ¼ 2pbl: Sa and Sb are the outer and inner areas of side surface of the hollow
cylinder. Substituting Eq. (26) into Eq. (27) yields

�Fra ¼
rVrSa

j

J1ðkrbÞY0ðkraÞ �Y1ðkrbÞJ0ðkraÞ
J1ðkraÞY1ðkrbÞ � J1ðkrbÞY1ðkraÞ

vra þ
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j
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13n
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þ
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vrb �
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sE
11 þ sE
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13n

; ð28Þ
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�Frb ¼
rVrSb

j

J1ðkraÞY0ðkrbÞ �Y1ðkraÞJ0ðkrbÞ
J1ðkraÞY1ðkrbÞ � J1ðkrbÞY1ðkraÞ
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rVrSb

j
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11 þ sE

12 þ 2sE
13n

krbðsE
11 þ sE

13nÞ
vrb

þ
rVrSb

j

J1ðkrbÞY0ðkrbÞ �Y1ðkrbÞJ0ðkrbÞ
J1ðkraÞY1ðkrbÞ � J1ðkrbÞY1ðkraÞ

vra �
2pbd31E3l

sE
11 þ sE

12 þ 2sE
13n

: ð29Þ

Let V3 ¼ E3l; Zra ¼ rVrSa; Zrb ¼ rVrSb;

F 0
ra ¼

Fra

2pa
þ

nd33V3

sE
11 þ sE

12 þ 2sE
13n

; F 0
rb ¼

Frb

2pb
þ

nd33V3

sE
11 þ sE

12 þ 2sE
13n

:

Eqs. (28) and (29) can be rewritten as the following forms:

F 0
ra ¼

Zra

j

vraa

2pa2
Y1ðkrbÞJ0ðkraÞ � J1ðkrbÞY0ðkraÞ
J1ðkraÞY1ðkrbÞ � J1ðkrbÞY1ðkraÞ

�
sE
11 þ sE

12 þ 2sE
13n

kraðsE
11 þ sE

13nÞ

� �

þ
Zra

j

vrbb

2pab

Y1ðkraÞJ0ðkraÞ � J1ðkraÞY0ðkraÞ
J1ðkraÞY1ðkrbÞ � J1ðkrbÞY1ðkraÞ

þ
d31 þ nd33

sE
11 þ sE

12 þ 2sE
13n

V3; ð30Þ

F 0
rb ¼

Zrb

j

vrbb

2pb2
Y1ðkraÞJ0ðkrbÞ � J1ðkraÞY0ðkrbÞ
J1ðkraÞY1ðkrbÞ � J1ðkrbÞY1ðkraÞ

þ
sE
11 þ sE

12 þ 2sE
13n

krbðsE
11 þ sE

13nÞ

� �

þ
Zrb

j

vraa

2pab

Y1ðkrbÞJ0ðkrbÞ � J1ðkrbÞY0ðkrbÞ
J1ðkraÞY1ðkrbÞ � J1ðkrbÞY1ðkraÞ

þ
d31 þ nd33

sE
11 þ sE

12 þ 2sE
13n

V3: ð31Þ

Let

v0ra ¼ �vra½J0ðkrbÞY1ðkrbÞ �Y0ðkrbÞJ1ðkrbÞ�;

v0rb ¼ �vrb½J0ðkraÞY1ðkraÞ �Y0ðkraÞJ1ðkraÞ�:

Using the relationship of Jnþ1ðxÞYnðxÞ �Ynþ1ðxÞJnðxÞ ¼ 2=ðpxÞ; we have

v0ra ¼
2

pkrab
vraa; v0rb ¼

2

pkrab
vrbb: ð32Þ

Substituting Eq. (32) into Eqs. (30) and (31), after some transformations, we have

F 00
ra ¼

p2ðkrbÞ
2Zra

4j

Y1ðkrbÞJ0ðkraÞ � J1ðkrbÞY0ðkraÞ
J1ðkraÞY1ðkrbÞ � J1ðkrbÞY1ðkraÞ

�
1� n12 � 2n13n
krað1� n13nÞ

� �
v0ra

þ j
Zrapkrb

2

1

J1ðkraÞY1ðkrbÞ � J1ðkrbÞY1ðkraÞ
v0rb þ N31V3; ð33Þ

F 00
rb ¼

p2ðkraÞ
2Zrb

4j

Y1ðkraÞJ0ðkrbÞ � J1ðkraÞY0ðkrbÞ
J1ðkraÞY1ðkrbÞ � J1ðkrbÞY1ðkraÞ

þ
1� n12 � 2n13n
krbð1� n13nÞ

� �
v0rb

þ j
Zrbpkra

2

1

J1ðkraÞY1ðkrbÞ � J1ðkrbÞY1ðkraÞ
v0ra þ N31V3: ð34Þ

In Eqs. (33) and (34), F 00
ra ¼ F 0

raðp
2krabÞ; F 00

rb ¼ F 0
rbðp

2krabÞ; n12 ¼ �sE
12=sE

11; n13 ¼ �sE
13=sE

11:

N31 ¼ p2krab
d31 þ nd33

sE
11 þ sE

12 þ 2sE
13n

;
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where N31 is defined as the electro-mechanical transformation coefficient of the piezoelectric
ceramic hollow cylinder in radial vibration. Eqs. (33) and (34) can be rewritten as the following
simplified forms:

F 00
ra ¼ ðZ2 þ Z3Þv0ra þ Z3v

0
rb þ N31V3; ð35Þ

F 00
rb ¼ ðZ1 þ Z3Þv0rb þ Z3v

0
ra þ N31V3: ð36Þ

In these two equations, Z1;Z2;Z3 are three mechanical impedances, their expressions are as
follows:

Z1 ¼
p2ðkraÞ

2Zrb

4j

Y1ðkraÞJ0ðkrbÞ � J1ðkraÞY0ðkrbÞ
J1ðkraÞY1ðkrbÞ � J1ðkrbÞY1ðkraÞ

þ
1� n12 � 2n13n
krbð1� n13nÞ

� �

� j
Zrb

2

pkra

J1ðkraÞY1ðkrbÞ � J1ðkrbÞY1ðkraÞ
; ð37Þ

Z2 ¼
p2ðkrbÞ

2Zra

4j

Y1ðkrbÞJ0ðkraÞ � J1ðkrbÞY0ðkraÞ
J1ðkraÞY1ðkrbÞ � J1ðkrbÞY1ðkraÞ

�
1� n12 � 2n13n
krað1� n13nÞ

� �

� j
Zra

2

pkrb

J1ðkraÞY1ðkrbÞ � J1ðkrbÞY1ðkraÞ
; ð38Þ

Z3 ¼ j
Zrb

2

pkra

J1ðkraÞY1ðkrbÞ � J1ðkrbÞY1ðkraÞ
¼ j

Zra

2

pkrb

J1ðkraÞY1ðkrbÞ � J1ðkrbÞY1ðkraÞ
: ð39Þ

For the electrical characteristics of piezoelectric ceramic hollow cylinder in coupled radial
vibration, from Eq. (10) the electric displacement can be expressed as

D3 ¼
d31 þ nd33

sE
11 þ sE

12 þ 2sE
13n

ðSr þ SyÞ þ eT
33E3 �

2d31E3ðd31 þ nd33Þ
sE
11 þ sE

12 þ 2sE
13n

: ð40Þ

Substituting Eqs. (13) and (21) into Eq. (40) yields

D3 ¼
d31 þ nd33

sE
11 þ sE

12 þ 2sE
13n

kr½ArJ0ðkrrÞ þ BrY0ðkrrÞ� þ eT
33E3 �

2d31E3ðd31 þ nd33Þ
sE
11 þ sE

12 þ 2sE
13n

: ð41Þ

Let the current flowing into the hollow cylinder be I31; then for a harmonic motion I31 ¼ dQ=dt;
where Q is the surface charge. Since the value of D3 at the surface is equal to the surface charge
density, we can find Q by performing the integration

Q ¼ 2p
Z

D3 r dr: ð42Þ

Evaluating this integral yields

Q ¼
2pðd31 þ nd33Þ

sE
11 þ sE

12 þ 2sE
13n

½ArkrCð1Þ þ BrkrCð2Þ� þ pða2 � b2Þ eT
33E3 �

2d31E3ðd31 þ nd33Þ
sE
11 þ sE

12 þ 2sE
13n

� �
; ð43Þ

where Cð1Þ ¼ ð1=k2
r Þ½kraJ1ðkraÞ � krbJ1ðkrbÞ�; Cð2Þ ¼ ð1=k2

r Þ½kraY1ðkraÞ � krbY1ðkrbÞ�: Substi-
tuting the expressions of Ar and Br into Eq. (43), using I31 ¼ joQ; we have

I31 ¼ joC0rV3 �
2pðd31 þ nd33Þ

sE
11 þ sE

12 þ 2sE
13n

ðavra þ bvrbÞ: ð44Þ
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In Eq. (44)

C0r ¼
eT
33S

l
1�

2d31ðd31 þ nd33Þ
eT
33ðs

E
11 þ sE

12 þ 2sE
13nÞ

� �

and C0r is the equivalent clamped capacitance of radial vibration of the piezoelectric ceramic
hollow cylinder in coupled vibration. S ¼ pða2 � b2Þ; S is the cross-sectional area of the
piezoelectric ceramic hollow cylinder. Using the above relations, Eq. (44) can be rewritten as

I31 ¼ joC0rV3 � N31ðv0ra þ v0rbÞ: ð45Þ

Combining Eqs. (35), (36) and (45), the equivalent circuit of the radial vibration of the
piezoelectric ceramic hollow cylinder in coupled vibration can be obtained as shown in Fig. 2.

2.2. The equivalent circuit for the equivalent longitudinal vibration of the piezoelectric hollow

cylinder in coupled vibration

In the above analysis, the equivalent radial vibration for the cylinder in coupled vibration is
studied. In this section, the equivalent longitudinal vibration for the piezoelectric ceramic hollow
cylinder in coupled vibration will be analyzed. From Eqs. (9) and (10), we have

Sz ¼ ðsE
33 þ sE

13=nÞTz þ d33E3; ð46Þ

E3 ¼ ½D3 � ðd33 þ d31=nÞTz�=eT
33: ð47Þ

Substituting Eq. (47) into Eq. (46) yields

Sz ¼ sE
33 þ

sE
13

n

� �
Tz þ d33 D3 � d33 þ

d31

n

� �
Tz

� ��
eT
33: ð48Þ

From Eq. (48), we can get

Tz ¼ EzðSz � d33D3=eT
33Þ; ð49Þ

where

Ez ¼ sE
33 þ

sE
13

n
�

d33

eT
33

d33 þ
d31

n

� �� ��1

¼ sE
33 1�

n31
n

� k2
33 1�

l31
n

� �� �� ��1

;
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Ez is called the longitudinal equivalent elastic constant of the piezoelectric ceramic cylinder in
coupled vibration. k2

33 ¼ d2
33=e

T
33s

E
33; n31 ¼ �sE

13=sE
33; l31 ¼ �d31=d33: Substituting Eq. (49) into

Eq. (12) yields

@2xz=@t2 ¼ V2
z ð@

2xz=@z2Þ; ð50Þ

where Vz ¼ ðEz=rÞ
1=2; Vz is called the longitudinal equivalent sound speed. Here @D3=@z ¼ 0 was

used in deriving Eq. (50). For a harmonic motion, xz ¼ xza expðjotÞ; Eq. (50) can be reduced to

d2xza=dz2 þ k2
zxza ¼ 0; ð51Þ

where kz ¼ o=Vz; kz is defined as the longitudinal equivalent wave number. The solution of
Eq. (51) is

xza ¼ Az sinðkzzÞ þ Bz cosðkzzÞ: ð52Þ

The equivalent longitudinal velocity for the hollow cylinder in coupled vibration is

vz ¼ jo½Az sinðkzzÞ þ Bz cosðkzzÞ�: ð53Þ

From Fig. 1, using Eq. (53), we have

vz1 ¼ vzðz ¼ 0Þ ¼ joBz; ð54Þ

vz2 ¼ �vzðz ¼ lÞ ¼ �jo½Az sinðkzlÞ þ Bz cosðkzlÞ�: ð55Þ

From the above equations, the constants Az and Bz can be obtained:

Az ¼ �
1

jo
�

vz1

tan ðkzlÞ
þ

vz2

sin ðkzlÞ

� �
; ð56Þ

Bz ¼
vz1

jo
: ð57Þ

Using the relation of Sz ¼ @xz=@z and Eq. (52), substituting Eqs. (56) and (57) into Eq. (49) yields

Tz ¼ �
kzEz

jo
�

vz1

tan kzl
þ

vz2

sin kzl

� �
cos ðkzzÞ þ vz1sin ðkzzÞ

� �
�

d33D3Ez

eT
33

: ð58Þ

From Fig. 1, the external forces can be expressed as

Fz1 ¼ �STzjz¼0 ¼
kzEzS

jo
�

vz1

tan kzl
þ

vz2

sin kzl

� �
þ

d33D3EzS

eT
33

; ð59Þ

Fz2 ¼ �STzjz¼1 ¼
kzEzS

jo
�

vz1

sin kzl
þ

vz2

tan kzl

� �
þ

d33D3EzS

eT
33

: ð60Þ

The voltage and current of the piezoelectric ceramic hollow cylinder resonator in longitudinal
vibration can be obtained:

I33 ¼ joD3pa2; ð61Þ

V3 ¼
Z 1

0

E3 dz: ð62Þ
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Substituting Eq. (58) into Eq. (47) and then into Eq. (62) yields

V3 ¼
1

eT
33

� 1þ d33 þ
d31

n

� �
d33Ez

eT
33

� �
D3l þ

ðd33 þ d31=nÞEz

joeT
33

ðvz1 þ vz2Þ: ð63Þ

Substituting Eq. (61) into Eq. (63) yields

I33 ¼ joC0zV3 � N33ðvz1 þ vz2Þ: ð64Þ

Here,

C0z ¼
SeT

33

l½1þ ðd33 þ d31=nÞd33Ez=eT
33�

;

where C0z is called the equivalent clamped capacitance of the equivalent longitudinal vibration of
the hollow cylinder in coupled vibration,

N33 ¼
ðd33 þ d31=nÞEzS

l½1þ ðd33 þ d31=nÞd33Ez=eT
33�

¼
ðd33 þ d31=nÞS
lðsE

33 þ sE
13=nÞ

;

where N33 is defined as the equivalent electro-mechanical conversion coefficient of the ceramic
cylinder resonator in coupled vibration. From the above analysis, Eqs. (59) and (60) can be
rewritten as

F 0
z1 ¼

rSVz

j sin kzl
�

N2
33

joC0z

þ
N2

33

joCp

� �
ðvz1 þ vz2Þ þ jrSVztan

kzl

2

� �
vz1 þ N33V3; ð65Þ

F 0
z2 ¼

rSVz

j sin kzl
�

N2
33

joC0z

þ
N2

33

joCp

� �
ðvz1 þ vz2Þ þ jrSVztan

kzl

2

� �
vz2 þ N33V3: ð66Þ

Here,

Cp ¼
SeT

33

l½1þ ðd33 þ d31=nÞd33Ez=eT
33�

�
ðd33 þ d31=nÞ

d31=n
¼ C0z 1þ

d33

d31
n

� �
; F 0

z1 ¼ Fz1 þ F3c;

F 0
z2 ¼ Fz2 þ F3c;F3c ¼

Sd31Ez=n

l½1þ ðd33 þ d31=nÞd33Ez=eT
33�

� V3; S ¼ pða2 � b2Þ:

Cp and F3c are caused by the coupling between the radial and longitudinal vibrations in the hollow
cylinder. From Eqs. (64)–(66), the equivalent circuit of the equivalent longitudinal vibration of the
piezoelectric ceramic hollow cylinder in coupled vibration can be obtained as shown in Fig. 3. In
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Fig. 3. Equivalent circuit of the longitudinal vibration of the piezoelectric ceramic hollow cylinder in coupled vibration.
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the figure, Zz1 ¼ jrSVz tan ðkzl=2Þ;Zz2 ¼ rSVz=j sin ðkzlÞ: It can be seen that it is different from
the traditional one-dimensional equivalent circuit of a slender piezoelectric ceramic rod that an
additional capacitance is created. The additional capacitance is resulted from the coupling
between the longitudinal and the radial vibrations in the hollow cylinder.

2.3. Equivalent circuit of the piezoelectric ceramic hollow cylinder in coupled vibration

In practical cases, the piezoelectric ceramic hollow cylinder is excited by an external alternating
electric signal that is in the direction of the longitudinal axis. As is discussed above, since the
longitudinal and the radial dimensions of the cylinder are comparable, when the piezoelectric
ceramic hollow cylinder is excited electrically, it will experience a complex coupled vibration, and
this coupled vibration is composed of the equivalent radial and longitudinal vibrations. Let the
current of the hollow cylinder resonator in coupled vibration be I3: From the above analysis,
following relation can be obtained:

I3 ¼ I31 þ I33: ð67Þ

From the above analysis and Eq. (67), the equivalent circuit of the piezoelectric ceramic hollow
cylinder in coupled vibration can be derived as shown in Fig. 4.
It can be seen that the vibration of a piezoelectric ceramic hollow cylinder with comparable

radial and longitudinal dimensions is a very complex coupled vibration. However, when its
dimensions satisfy certain conditions, the coupled vibration can be simplified to some simple
vibrations. For example, when the piezoelectric ceramic hollow cylinder becomes a slender rod,
that is to say, when the longitudinal length is far larger than its radial radius, we have lba: In this
case, the mechanical coupling coefficient n becomes infinity. And therefore, we have the following
equations:

Ez ¼ sE
33 þ

sE
13

n
�

d33

eT
33

d33 þ
d31

n

� �� ��1

¼
1

sE
33ð1� k2

33Þ
¼

1

sD
33

; ð68Þ

Vz ¼ ðEz=rÞ
1=2 ¼ ½1=ðsD

33rÞ�
1=2: ð69Þ
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In Eq. (68), k2
33 ¼ d2

33=ðs
E
33e

T
33Þ; k33 is just the electro-mechanical coupling coefficient of the

piezoelectric ceramic slender rod polarized in the longitudinal vibration. In another case, when the
thickness of the cylinder is much less than its radius, we have l5a: In this case, the mechanical
coupling coefficient n becomes zero; the following equations can be obtained:

Er ¼
sE
11 þ sE

13n

ðsE
11 � sE

12Þðs
E
11 þ sE

12 þ 2sE
13nÞ

¼
1

sE
11ð1� n212Þ

; ð70Þ

Vr ¼ ðEr=rÞ
1=2 ¼

1

sE
11rð1� n212Þ

� �1=2
: ð71Þ

It can be seen that in this case the coupled vibration of the hollow cylinder becomes the plane
radial vibration of a thin piezoelectric ceramic ring.

3. The resonance frequency equations of the piezoelectric ceramic hollow cylinder in coupled

vibration

To analyze the frequency characteristics of the piezoelectric ceramic hollow cylinder resonator
in coupled vibration, the frequency equation of the resonator must be derived. In general cases,
the frequency characteristics are studied when the vibrator is free from external forces. From
Fig. 4, when the cylinder vibrates freely, the external forces can be ignored. In this case, we have

Fr1 ¼ Fr2 ¼ 0; Fz1 ¼ Fz2 ¼ 0: ð72Þ

Using Eq. (72), the admittance of the piezoelectric ceramic hollow cylinder resonator in coupled
vibration can be obtained as the following form:

Y3 ¼
I3

V3
¼

I31 þ I33

V3
¼ Y31 þ Y33: ð73Þ

Here, Y31 and Y33 are the equivalent electric admittances of the piezoelectric ceramic hollow
cylinder resonator in equivalent radial and longitudinal vibrations, respectively. For the
equivalent radial vibration, its equivalent admittance Y31 can be derived as

Y31 ¼
joeT

33S

l
� 1� ðk0

pÞ
2 þ ðk0

pÞ
2 2

a2 � b2

�

�
½aJ1ðkraÞ � bJ1ðkrbÞ�½Y ðbÞ � Y ðaÞ� þ ½aY1ðkraÞ � bY1ðkrbÞ�½JðaÞ � JðbÞ�

JðaÞY ðbÞ � JðbÞY ðaÞ
; ð74Þ

where JðaÞ ¼ JðxÞjx¼a; JðbÞ ¼ JðxÞjx¼b; Y ðaÞ ¼ Y ðxÞjx¼a; Y ðbÞ ¼ Y ðxÞjx¼b; JðxÞ and Y ðxÞ are two
introduced functions, their expressions are

JðxÞ ¼ ½krJ0ðkrxÞ � 2J1ðkrxÞ=x�ð1� n12 � 2n13nÞ=ð1þ n12Þ þ krJ0ðkrxÞ; ð75Þ

Y ðxÞ ¼ ½krY0ðkrxÞ � 2Y1ðkrxÞ=x�ð1� n12 � 2n13nÞ=ð1þ n12Þ þ krY0ðkrxÞ: ð76Þ

In Eq. (74),

ðk0
pÞ

2 ¼
2d31ðd31 þ nd33Þ

eT
33ðs

E
11 þ sE

12 þ 2sE
13nÞ

;
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k0
p is defined as the electro-mechanical coupling coefficient of the equivalent radial vibration of the

cylinder in coupled vibration. It can be expressed as the following form:

ðk0
pÞ

2 ¼ k2
p �

1� n=l31
1� 2n13n=ð1� n12Þ

: ð77Þ

In this equation, k2
p ¼ 2d2

31=½e
T
33ðs

E
11 þ sE

12Þ�; kp is the electro-mechanical coupling coefficient of the
piezoelectric ceramic thin ring or plate in plane radial vibration. l31 ¼ �d31=d33; n12 ¼
�sE

12=sE
11; n13 ¼ �sE

13=sE
11: For the equivalent longitudinal vibration, its equivalent admittance

Y33 is

Y33 ¼
I33

V3
¼

joSeT
33

l
�

1� ðk0
33Þ

2

1� ðk0
33Þ

2tan ðkzl=2Þ=ðkzl=2Þ
: ð78Þ

In Eq. (78),

ðk0
33Þ

2 ¼
d33

eT
33

ðd33 þ d31=nÞ
ðsE

33 þ sE
13=nÞ

;

and k0
33 is the equivalent longitudinal electro-mechanical coupling coefficient of the hollow

cylinder resonator in coupled vibration. It can be rewritten as

ðk0
33Þ

2 ¼ k2
33 �

1� l31=n

1� n31=n
; ð79Þ

where k2
33 ¼ d2

33=e
T
33s

E
33; k33 is the electro-mechanical coupling coefficient of the slender piezo-

electric ceramic element in longitudinal vibration, and n31 ¼ �sE
13=sE

33:When the admittance of the
hollow cylinder resonator has a maximal value, the resonator will resonate. Therefore, the
resonance frequency equations for the piezoelectric ceramic hollow cylinder resonator in coupled
vibration can be obtained from Eqs. (74) and (78):

1� ðk0
33Þ

2 tan ðkzl=2Þ=ðkzl=2Þ ¼ 0; ð80Þ

JðaÞY ðbÞ � JðbÞY ðaÞ: ð81Þ

Using the expressions of JðxÞ and Y ðxÞ; we can rewrite Eq. (81) as follows:

kraJ0ðkraÞ � ð1� n12 � 2n13nÞ=ð1� n13nÞJ1ðkraÞ
krbJ0ðkrbÞ � ð1� n12 � 2n13nÞ=ð1� n13nÞJ1ðkrbÞ

¼
kraY0ðkraÞ � ð1� n12 � 2n13nÞ=ð1� n13nÞY1ðkraÞ
krbY0ðkrbÞ � ð1� n12 � 2n13nÞ=ð1� n13nÞY1ðkrbÞ

: ð82Þ

Eqs. (80) and (82) are the resonance frequency equations for the piezoelectric ceramic hollow
cylinder resonator in coupled vibration. It seems that these two frequency equations are similar to
those for the longitudinal vibration of a slender ceramic rod and the plane radial vibration of a
thin ceramic plate. However, they are different. The difference is that for Eqs. (80) and (82), they
are not independent of each other, but are correlated by the mechanical coupling coefficient.
In Eqs. (80) and (82), when the geometrical dimensions and the material parameters of the

longitudinally polarized piezoelectric ceramic hollow cylinder are given, the unknown quantities
are the angular frequency and the mechanical coupling coefficient. Therefore, from these two
equations we can get the resonance frequencies of the hollow cylinder in coupled vibration. Since
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the resonance frequency equations are transcendental equations with two unknowns, it is difficult
to find the solutions by an analytic method. Therefore, numerical methods are used. The
procedures to solve the frequency equations are as follows: First, by assigning a value of the
mechanical coupling coefficient, from Eqs. (80) and (82), two frequencies f 0

1 and f 0
2 can be

obtained. Repeat this procedure by varying the value of the mechanical coupling coefficient until
f 0
1 and f 0

2 become equal. In this case, the mechanical coupling coefficient and the frequency are the
solutions to the frequency equations (80) and (82). In practical cases, the frequency equations are
solved using mathematical softwares, such Mathematica or Matlab.
From the computed results it can be seen that when the geometrical dimensions and the

material parameters of the piezoelectric ceramic hollow cylinder are given, for a certain
vibrational mode, such as the fundamental mode, there exists two groups of solutions that are
noted as fr; nr and fz; nz: From the above analysis, considering the practical vibrational
characteristics, it can be seen that these two groups of solutions represent the equivalent
longitudinal vibration and the plane radial vibration of the hollow cylinder in coupled vibration,
respectively. The frequencies fr and fz are the resonance frequencies of the equivalent plane radial
vibration mode and the longitudinal vibration mode of the hollow cylinder when the mechanical
coupling between the radial and the longitudinal vibrations and the piezoelectric effect are
considered. From the analysis and the computed results, it can also be seen that when the height is
much less or larger than the radius of the hollow cylinder, the computed frequencies fr and fz are
far away from each other; this is consistent with the measured results for a longitudinally
polarized piezoelectric ceramic slender rod ðlbaÞ or a thin disk ðl5aÞ: In these cases, the
mechanical coupling between the radial and the longitudinal vibrations is weak; the vibration of
the resonator can be regarded as decoupling, such as the one-dimensional longitudinal vibration
of a slender ceramic rod or the plane radial vibration of a thin ceramic plate. However, if the
height is comparable with the radius of the hollow cylinder, the resonance frequencies fr and fz are
also comparable; in this case, the mechanical coupling is intense, and the vibration of the hollow
cylinder is a complex coupled vibration.

4. Experiments

The resonance frequencies of the piezoelectric ceramic hollow cylinder resonators are measured
to test and verify the proposed theory for the analysis of the hollow cylinder resonator in coupled
vibration. The piezoelectric ceramic material used here is an equivalent of PZT-4 that is made in
China. The standard material parameters are used in the design and calculation. The material
parameters are: r ¼ 7500 kg=m3; kp ¼ 0:58; k33 ¼ 0:70; sE

11 ¼ 12:3� 10�12 m2=N; sE
12 ¼ �4:05�

10�12 m2=N; sE
13 ¼ �5:31� 10�12 m2=N; sE

33 ¼ 15:5� 10�12 m2=N; d31 ¼ �123� 10�12 C=N;
d33 ¼ 496� 10�12 C=N; eT

33=e0 ¼ 1300: The resonance frequencies of the piezoelectric ceramic
hollow cylinder in coupled vibration are measured using HP 4294A precision impedance analyzer.
The geometrical dimensions, the computed resonance frequencies, and the measured results are
shown in Table 1, where fr and fz are the computed radial and longitudinal frequencies of the
hollow cylinder in coupled vibration and frm and fzm are the measured results. For comparison, the
resonance frequencies f1r and f1z that are computed from one-dimensional theory are also given in
the table.
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In this paper, the fundamental vibrational mode of the piezoelectric ceramic hollow cylinder in
coupled vibration is studied. The reason is that in most cases the fundamental vibration mode of
piezoelectric vibrators is widely used. It has high electro-mechanical coupling coefficient,
sensitivity, and low mechanical and dielectric loss. As for the higher vibrational modes, the
analysis is similar to that described in the above sections. For example, for the second vibrational
mode, the second roots of Eqs. (80) and (82) must first be found. Then the resonance frequency
for the second vibrational mode of the cylinder resonator can be computed. However, the analysis
for the high vibrational modes is complex. The reason is that the modal interaction must be
considered. For example, for the second vibrational mode, the interaction between the radial
vibration of order one and the longitudinal vibration of order two, the interaction between the
thickness vibration of order one and the radial vibration of order two, and the interaction between
the radial vibration of order two and the longitudinal vibration of order two must be analyzed
and considered at the same time.
As for the frequency error, it is thought that two kinds of errors should be considered. One is

the systematic error; the other is the random error. The systematic error is caused by the
appropriate analysis method, while the random error is determined by many uncertain factors.
Sometimes the uncertain factors are more important, they affect the measured results.
Considering the above facts, the following factors should be taken into account for the frequency
error analysis: (1) The standard material parameters are different from the practical values. An
error of 3%–5% can be caused by this factor. (2) In this method, to simplify the analysis, the
mechanical coupling coefficient is considered as a constant. However, the mechanical coupling
coefficient is different at different positions in the cylinder resonator. (3) The longitudinal and the
radial extensional vibrations in the resonator are supposed. However, for the coupled vibration of
the piezoelectric ceramic hollow cylinder, the shearing and other strains may exist in the
resonator. (4) The analytical method presented in this paper is an approximate one. It can be used
to analyze the resonance frequency of resonators in coupled vibration; however, it cannot be used
to calculate the vibrational displacement distribution.
In order to understand the effect of geometrical dimensions of the piezoelectric ceramic tubes

on the resonance frequency, the effect of the inner radius of the ceramic tube is studied. Using the
coupled vibration theory, the resonance frequency of the piezoelectric ceramic tubes with different
inner radius is calculated by changing the value of the inner radius while fixing the outer radius
and the thickness. The theoretical results are shown in Table 1. It can be seen that when the inner
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Table 1

Calculated and measured resonance frequencies for the piezoelectric ceramic hollow cylinder in coupled vibration

l a b f1r f1z fr fz frm fzm

(mm) (mm) (mm) (kHz) (kHz) (kHz) (kHz) (kHz) (kHz)

5.0 19.0 7.5 42.38 307.47 42.30 314.66 41.57 325.73

6.0 20.0 8.0 40.05 256.23 40.04 256.39 40.17 258.81

6.0 25.0 8.5 34.13 256.23 34.06 263.66 35.05 264.83

5.0 25.0 11.0 30.80 307.47 30.75 315.50 30.36 321.73

8.0 30.0 7.0 32.11 192.17 31.96 196.92 31.43 209.59

8.0 30.0 8.0 30.89 192.17 30.78 197.91 � �
8.0 30.0 9.0 29.73 192.17 29.64 198.93 � �
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radius is increased while fixing the outer radius and the thickness, the one-dimensional radial
resonance frequency is decreased, while the one-dimensional longitudinal resonance frequency is
unchanged. The radial resonance frequency by the coupled vibrational theory is decreased, while
the longitudinal resonance frequency by the coupled vibrational theory is increased. On the other
hand, it can also be seen that the radial resonance frequency by the coupled vibrational theory is
lower than that by one-dimensional theory, while the longitudinal resonance frequency by the
coupled vibrational theory is higher than that by one-dimensional theory.
From the above analysis, it can be seen that the resonance frequency for a piezoelectric ceramic

resonator in coupled vibration can be calculated by the developed approximate analytical method.
Compared with numerical methods, this method is concise in physical concept, the calculation is
time-saving, and the analysis of the results is simple. However, this method cannot be used to
analyze the vibrational mode function, and therefore, it is difficult to obtain the vibrational
displacement distribution in the resonator in coupled vibration.

5. Conclusions

In this paper, the coupled vibration of a longitudinally polarized piezoelectric ceramic hollow
cylinder is studied. An approximate analytic method is developed to analyze the complex coupled
vibration, and the equivalent circuit for the ceramic cylinder in coupled vibration is obtained. To
sum up the above analysis, the following conclusions can be drawn:
(1) When the mechanical coupling coefficient is introduced, the complex coupled vibration of

the piezoelectric ceramic hollow cylinder can be divided into two equivalent extensional
vibrations: one is the longitudinal vibration, and the other is the plane radial vibration. However,
these two vibrations are not independent of each other. They are correlated by the mechanical
coupling coefficient.
(2) The equivalent circuit for the piezoelectric ceramic hollow cylinder in coupled vibration is

derived. It can be used in the frequency analysis of the hollow cylinder in coupled vibration.
(3) There are two kinds of resonance frequencies for the coupled vibration of the piezoelectric

ceramic hollow cylinder; one is the radial resonance frequency and the other is the longitudinal
resonance frequency. These two frequencies are different from those from one-dimensional
theory.
(4) In general cases, the vibration of the hollow cylinder with comparable dimensions is a

complex coupled vibration. However, when the geometrical dimensions satisfy certain conditions,
the vibration can be regarded as one-dimensional vibration, such as the longitudinal vibration of a
slender ceramic rod, or the radial vibration of a thin piezoelectric ceramic plate.
(5) In this paper, the shearing strains and torsion are ignored and the vibration of the hollow

cylinder is assumed to be a coupled one of two equivalent extensional vibrations.
(6) The method is simple and the resonance frequencies obtained are in good agreement with

the measured results.
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