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Abstract

Longitudinally polarized piezoelectric ceramic disks with central holes have been the most commonly
used elements in underwater acoustics and ultrasonics. For very thin piezoelectric ceramic disks, its
vibration can be regarded as one-dimensional thickness extensional vibration, or plane radial vibration, and
the coupling between these two different vibrational modes is neglected. However, for practical
piezoelectric ceramic disks with central holes, the geometrical dimensions do not satisfy the requirements
for the thin ring, and the coupling must be considered. In this paper, the coupled vibration of the
longitudinally polarized piezoelectric ceramic disks with central holes is studied using an approximate
analytical method. When the mechanical coupling coefficient is introduced and the shearing strain is
ignored, the coupled vibration of the piezoelectric ceramic hollow cylinder is divided into two equivalent
vibrations. One is the equivalent longitudinal extensional vibration, and the other is the equivalent radial
vibration. These two equivalent vibrations are not independent; they are correlated together by the
mechanical coupling coefficient. The equivalent circuit for the piezoelectric ceramic hollow cylinders in
coupled vibration is derived, and the resonance frequency equations are obtained. Based on the coupled
frequency equations, the longitudinal and radial resonance frequencies can be obtained when the
dimensions and the material parameters are given. Compared with one-dimensional theory, the computed
resonance frequencies in this paper are in good agreement with the measured results. Compared with the
numerical methods, the analytic method presented in this paper is simple in computing the longitudinal and
radial resonance frequencies and in analyzing the coupled vibrational modes of the piezoelectric ceramic
disks with central holes.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Longitudinally polarized piezoelectric ceramic elements, such as disks, rings, cylinders with
central holes are the important electromechanical transformation elements in sandwiched
piezoelectric transducers used for underwater acoustics and ultrasonics. The vibration analysis
theory of the piezoelectric ceramic thin disks or slender cylinders based on one-dimensional theory
has been well established [1,2]. The coupled vibration of the piezoelectric ceramic disk, hollow
cylinder whose wall thickness is much less than its average radius was also studied in previous
works [3-7]. However, when the diameter and the thickness of the disk and the hollow cylinder
become comparable with each other, the vibration of the elements is a complex coupled vibration.
Numerical methods [8—11] have been used to study the coupled vibration of the piezoelectric
ceramic elements. In our previous studies, the coupled vibration of the piezoelectric ceramic thick
circular and the rectangular plates have been analyzed using an approximate analytical method
[12—-16]. In this paper, on the basis of the piezoelectric equations and wave equations, when the
shearing strain is ignored, the three-dimensional coupled vibration of the longitudinally polarized
piezoelectric ceramic hollow cylinder whose height and thickness are comparable with its radius is
studied analytically. The equivalent circuit of the piezoelectric ceramic hollow cylinder in coupled
vibration is obtained, and the resonance frequency equations of the piezoelectric ceramic hollow
cylinder in axially symmetric vibration are derived that can be used to compute the longitudinal
and radial resonance frequencies. The analytic method presented in this paper can be used to
analyze the coupled vibration of other piezoelectric elements.

2. Equivalent circuit of the piezoelectric ceramic hollow cylinder in three-dimensional coupled
vibration

The piezoelectric ceramic element with which we will be concerned is a hollow cylinder as
shown in Fig. 1. In the figure, the height / is comparable with the outside radius a, and there will
be no restriction on the inside radius b. In the figure, F.;, F., are the longitudinal external forces,
F,,, F,; are the external forces acting on radial surfaces of the cylinder; v.1, v.3, v, U5 are the
velocities at the boundaries of the cylinder. The polarization direction is along the height of the
hollow cylinder and the external exciting electric field is parallel to the polarization direction. In
cylindrical co-ordinates, the three-dimensional motion equations for the cylinder in coupled

Z

Fig. 1. Geometrical diagram of a piezoelectric ceramic hollow cylinder.
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vibration are
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where r, 0,z are the cylindrical co-ordinates; &,, &y, &, are the three displacement components;
T,, Ty, T., Ty9, T2, Ty, are the stress components in the piezoelectric ceramic cylinder. The
relationship between the strain and the displacement are as follows:
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Here, S,, Sy, S-, S,0, Sp-, S,. are the strain components. It can be seen that for three-dimensional
coupled vibration, the wave equations are complex, and the analytic solution is almost impossible
if no assumptions are made. Although numerical methods can be used to analyze the coupled
vibration of resonators, large special software must be used. In the following analysis, some
assumptions are made to simplify the mathematical analysis of the coupled vibration of the
piezoelectric ceramic hollow cylinder and an approximate analytic method is presented, which
proves not only concise in physical concept, but also simple and time-saving in the calculation of
the resonance frequency of the resonator in coupled vibration.

From Fig. 1, it can be seen that as the polarization direction is parallel to that of the electric
field, the vibration of the hollow cylinder can be regarded as a coupled one of longitudinal and
radial extensional vibrations approximately; therefore shearing and torsion stress and strain can
be ignored. In cylindrical coordinates, when the edge effect of the electric field is ignored, we have

E1:E2:Oa E37EO, DIZDZZ()a D3¢05 TI’HZTrZ:T(‘)Z:O’ SrH:Srz:SG’z:0~ (6)
Here, E|, E>, and E; are components of the electric field in the r, 0, and z directions, Dy, D,, and D;

are components of the electric displacement. Using Eq. (6), the piezoelectric constitutive equations
can be reduced to the following form:

S, = sE T, + 55Ty + 55T, + ds) E;, )
Sy = sHT, 4 sE Ty + s5T. + dy1 E;, (8)
S, = sET, + 55Ty + s5T. + dy3 Es, ©)
Dy =dy T, +d Ty + d3T. + e, Es. (10)

In these equations, sg- is the elastic compliance constants measured at constant electric field, ds,
and ds3 are the piezoelectric strain constants, and 83T3 is the dielectric constant measured at
constant stress. For axis-symmetrical coupled vibration of the piezoelectric ceramic cylinder, we
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have &) = 0,0£y/00 = 0, 0Ty/00 = 0. The equations of motion can be reduced to the following
form:

pd*&, )0t = 0T, Jor + (T, — Ty)/r, (11)
pd*E.Jor* = T oz, (12)
o, ¢r s
= TA = z = . 1
S or S0 r S 0z (13)

2.1. Equivalent circuit for the equivalent radial vibration of the piezoelectric hollow cylinder in
coupled vibration

From Egs. (7) and (8), we have

Sy — So = (57, — s75) (T, — ), (14)
S, + Sp = (55, + 55) (T, + Tp) + 2d31 E3 + 255 T (15)

Letn = T./(T, + Ty), nis defined as the mechanical coupling coefficient. From Egs. (14) and (15),
we have

S, — Sy
T, —T)=+—F (16)
Sﬁ - sz

S, + Sy — 2d51 E5
sh 4+ 55 + 2sEn’

T, + Ty = (17)

Using Eqgs. (16) and (17), we can obtain the radial stress T, as follows:

. — - —2dy1E
T — (i Sg +SE+ SeE 32 3)/2. (18)
ST St S+ STy 2s13m

Substituting Egs. (13), (16), and (18) into wave equation (11) yields the radial equivalent wave
equation of motion

p(3°E,/0r) | E, = 3¢, /0" + (8¢, /or)[r — & /1. (19)
In Eq. (19),
_ st + sfn _ I —vi3n

(5, = sE)GE + 55 + 2sEn)  sE (1 +vin)(1 — via — 2vi3n)

and E, is defined as the radial equivalent elastic constant of equivalent radial vibration of the
piezoelectric ceramic hollow cylinder. viy = —s%, /sf,, vi3 = —s%/sE,. In the above transforma-

tions, 0F3/0r =0 is used. For simple harmonic motion, &, = &,, exp(jwt); the radial wave
equation becomes

E,

d%&,/di? + (A&, /dr) [r — & /7 + K1y = 0, (20)

where k, = 0/V,, V, = (E,/ p)l/ 2k, and V, are called the radial equivalent wave number and the
radial equivalent sound speed, and w is the angular frequency. Eq. (20) is a Bessel’s equation of
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the first order that has the solution
¢ra = A1 (ker) + B Y (Kyr), (21)

where Ji(k,r) and Y (k,r) are Bessel functions of the first and second kind. 4, and B, are two
constants that can be determined by the boundary conditions. From Eq. (21), the equivalent
radial velocity amplitude can be obtained as

vy = joldJi(kr) + B Y (k1)) (22)
From Fig. 1, we have
Ur|r=a = —Ur, vr|r=b = Urb- (23)

Substituting Eq. (22) into Eq. (23), after some transformations, the constants 4, and B, can be
obtained as
B — 1 Urad1(k:D) + vppd 1 (kya)
" joh(ka)Y 1 (kb) — J1(kb)Y 1 (kea)y

(24)

4 = _ i val(krb) + UrbYl(kra) (25)
" joJi(kya)Y (kD) — J1(kb)Y 1 (kya)

Substituting Egs. (24) and (25) into Eq. (21) and then into Egs. (13) and (18) yields the expression
of the equivalent radial stress
{J 1(k,b)[k,.Yo(k,.r)(s‘f1 + s‘%n) — Yl(k,.r)(s‘IE1 + sfz + 2sf3n) /r]
7y~ YikD)lkedoGer)(st + stym) — Tkt + st + 25/}
" o (ka)Y (kb)) — J1(kb)Y 1 (kya@)l(sE, — sE)(sE + sE + 2sEn)
{31 (ke@)[k, Y olkeor)(sE) + stan) — Y (kor)(s5y + 55 + 2s5m) /1]
=Y (kya)k, Jo(krr)(sEy + styn) — Ti(kor) (st + 55 + 2s5n) /r]}
i jol(k:a)Y 1 (keb) = J1(k:D)Y 1 (kra))(sT) — sP)(sT) + sty + 2sf3m)
- d31 E;
STy + sy + 25t

+v

(26)

From Fig. 1, we have
Fro = =T)|—0Sa,  Frp = —T|,—pSh. (27)
Here, S, = 2nal, S, = 2nbl. S, and S}, are the outer and inner areas of side surface of the hollow
cylinder. Substituting Eq. (26) into Eq. (27) yields
g, =P V:Sq J1(ki b)Y o(kra) — Y 1(k:D)o(kra) oy P ViSa sty + st + 2sfin bre
i k@)Y b) — T (kb)Y (kya) i kealst + styn)
pViSaly (kra)YO(kra) - Y, (kra)JO(kra) . 2nads Esl
i hka)Y (kb) =i (kb)Y(kea) " sE + 5T+ 2550

(28)
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_ pViSp Ji(kra)Yolk,b) — Y 1(kra)Jo(k,D) P V.S sﬁ + sfz + 2s1E3n

—F

1% Ver Jl(krb)Yo(krb) — Yl(krb)Jo(krb) — 27‘de31E31
i Tikea)Y (kb) — Ti(keb)Y 1 (kpa) " SE + 5E + 25En

Let V3 = Esl, Zyy = pViSa, Ziy = pV:-Sh,

F, _ ﬂ I’ld33 V3 r_ ﬁ I’ld33 V3
" 2ma  sE 4+ b+ 2sEn ™ b sk 5B 4+ 2sEn

Eqgs. (28) and (29) can be rewritten as the following forms:
, Zya vraa [Yi(keb)o(kra) — Ji (kb)Y o(kra) st + st + 2stn
21 [Jl(k,a)Yl(k,.b) — 11 b)Y (ka) — Ka(sE + sEn) }
Zq vapb Y1(kra)o(k,a) — T (ka)Yo(k,a) ds1 + ndsz
j 2mab Jy(kea)Y 1(keb) — T1 (kb)Y 1 (kya)  sE + sE + 25En

ra

35

, Zw owb [Yi(ka)olkib) — Ti(a)Yolkib) | 5B + 55 + 2sEin

) 2mb? [Jl(k,a)Yl(k,b) — J1(kb)Y 1(kea)  kyb(sE + sEn) }
Zup v Yr1Ub)olkrb) — 11 b)Yo(keb) — dsy + ndss
j 2mab Jy(kea)Y (ki) — Ty (kb)Y 1 (kya)  sE + sE + 25En

Let
Uy = —VralJo(krD)Y 1(kyb) — Yo(k:D) 1 (K, D)),
vy, = —om[Jo(kra)Y 1 (kra) — Yo(kea)l (kra)].

Using the relationship of J, 1 1(x)Y,(x) — Y, 1(x)J.(x) = 2/(nx), we have
2 2

/ /
Ural, Uy = —— Upb.

fra = nk,ab nk,ab
Substituting Eq. (32) into Egs. (30) and (31), after some transformations, we have
77:2(k,b)2Zm Yl(k,b)JO(k,,a) — J](krb)Y()(kra) 1 - Vi — 2\)13}’1 ,
4] [J 1(ka)Y (kD) — Ty (kb)Y 1 (K@) hepa(1 = vi3n) }Jm

. Zrk,b 1 g
2 Lea)Y (kb) — 1,k b)Y (ka)

"o
Fra_

+ N31 V3,

, 72eaY Zu [Yi(kaVo(b) — T(a)Yoleb) 1—viy—2vin]

o 4 {J (k@)Y (kD) — 11 (kb)Y 1 (k,a) + k.b(1 — viz3n) }]’b
. Zrbn'kra 1 W

2 Ti(ka)Y (kb) — T(kD)Y (k) ™

+ N3 V3.

In Egs. (33) and (34), F/, = F| (n°k.ab), Fl} = F,(t*k,ab), vi» = —sk, /s, vis = —s5 /s5,.

ds1 + nds3

N31 = nzkrab
E E )
ST s, + 2sThn

i hkaYikd) - DY (ha) "] kbGE +shn)

(29)

(30)

(1)

(32)

(33)

(34)
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where N3 is defined as the electro-mechanical transformation coefficient of the piezoelectric
ceramic hollow cylinder in radial vibration. Egs. (33) and (34) can be rewritten as the following
simplified forms:

Fl, = (Za+ Z3),, + Zsvy, + N3 Vs, (35)
;;) =(Z + Z3)Ulrb + Z3U/m + N3 V3. (36)

In these two equations, Z;,Z,,Z3 are three mechanical impedances, their expressions are as
follows:

7 — nz(kra)zzrb Y1 (ka)Jo(k,b) — Ji(kra)Yo(k,b) + I — vy —2vi3n
Ty 31 (k@)Y () — T1(b)Y 1 (kva) © heb(1 = vi3n)
L nk,a
] 2 Jl(kra)Yl(krb) - Jl(krb)Yl(kra)’ (37)
7, — nz(krb)zzra Y 1(k.D)o(kra) — J1(k,b)Y o(k,a) . 1 —vip—2vi3n
T4 J1(kea)Y 1 (rb) — 11(eb)Y 1 (kea) — kya(1 — vizn)
L kb
I N ka)Y 1 (D) — 11k D)Y 1 (Kra) (38)
Zi— i Z nk.a Ly kb (39)

-} 7 Jl(kra)Yl(krb) - Jl(krb)Yl(kra) - 7 A (kra)Yl (krb) - Jl(krb)Yl(kra).

For the electrical characteristics of piezoelectric ceramic hollow cylinder in coupled radial
vibration, from Eq. (10) the electric displacement can be expressed as

dsy) + ndsy3 2d31 E5(d31 + nds3)

D; = S+ S E; — . 40
. sh 4+ 5B 4+ 25En (874 S0) + 5B st + 55 + 2sEn (40)
Substituting Eqgs. (13) and (21) into Eq. (40) yields
d d 2ds1 E5(d d
Dy = PUENES L dohor) + B Yol + ey — S LTI )

= E E E E E E
STyt STy + 2533 S|+ STy + 2513

Let the current flowing into the hollow cylinder be 73;; then for a harmonic motion /3; = dQ/dz,
where Q is the surface charge. Since the value of D5 at the surface is equal to the surface charge
density, we can find Q by performing the integration

0=2n / Dsrdr. (42)

Evaluating this integral yields
0- 2n(d3) + nds3) 2d31 E5(d3) + nds3)
sk + 55 + 25En sb 4+ 55 + 25En
where C(1) = (1/k?)[k.a)\(k.a) — k,bI1(k,b)],  C(2) = (1/k?*)[k,aY (k,a) — k,bY (k,b)]. Substi-
tuting the expressions of 4, and B, into Eq. (43), using I3; = joQ, we have
2n(d3 + nds3)
st + st 4+ 25En

[4,k,C(1) + Bk, C(2)] + n(a® — b?) [8;& — , (43)

Ly = jwCo V3 —

avey + boyp). (44)
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In Eq. (44)

Cor = eh S [ 2d3(d31 + nds3)
! e33(sT) + sty + 2573m)
and Cy, is the equivalent clamped capacitance of radial vibration of the piezoelectric ceramic

hollow cylinder in coupled vibration. S = m(a®> —b?), S is the cross-sectional area of the
piezoelectric ceramic hollow cylinder. Using the above relations, Eq. (44) can be rewritten as

LIy = jwCy, V3 — N3y (v, + v)). (45)

Combining Egs. (35), (36) and (45), the equivalent circuit of the radial vibration of the
piezoelectric ceramic hollow cylinder in coupled vibration can be obtained as shown in Fig. 2.

2.2. The equivalent circuit for the equivalent longitudinal vibration of the piezoelectric hollow
cylinder in coupled vibration

In the above analysis, the equivalent radial vibration for the cylinder in coupled vibration is
studied. In this section, the equivalent longitudinal vibration for the piezoelectric ceramic hollow
cylinder in coupled vibration will be analyzed. From Egs. (9) and (10), we have

S, = (s5 + s5/mT. + ds3 E;, (46)
E3 = [Ds — (ds3 + d31 /)T Jexs. (47)
Substituting Eq. (47) into Eq. (46) yields
B d
S. = (sg% + S‘f) T. + ds; [D3 - (d33 + %) TZ] / els. (48)
From Eq. (48), we can get
T. = E.(S: — d33D3/¢1,), (49)
where
sE ds3 ds - V31 A31 -
e fod g (o) (ol 2-u(- 2
Yip 21 Zy Va
o — — o
st
” I3
jgo) Ff"a
IV:% Cor
O 0

Fig. 2. Equivalent circuit of the radial vibration of the piezoelectric ceramic hollow cylinder in coupled vibration.
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E. is called the longitudinal equivalent elastic constant of the piezoelectric ceramic cylinder in
coupled vibration. k3; = d3;/elisks, vi1 = —sE/s%,, 731 = —ds1/ds;. Substituting Eq. (49) into
Eq. (12) yields

PP Jor = VA(*E. )07, (50)
where V. = (E./ p)l/ 2, V. is called the longitudinal equivalent sound speed. Here 6D; /0z = 0 was
used in deriving Eq. (50). For a harmonic motion, &, = &, exp(jwt), Eq. (50) can be reduced to

d*¢.,/d2 + K&, =0, (51)

where k. = w/V., k. is defined as the longitudinal equivalent wave number. The solution of
Eq. (51) is

E.o = A.sin(k.z) + B, cos(k.z). (52)
The equivalent longitudinal velocity for the hollow cylinder in coupled vibration is
v, = jo[A; sin(k.z) + B; cos(k.z)]. (53)
From Fig. 1, using Eq. (53), we have
U1 = UZ(Z = 0) = ]COBZ, (54)
v = —0.(z = ) = —jw[ A sin(k.l) + B. cos(k.l)]. (55)
From the above equations, the constants 4, and B, can be obtained:
1 V51 U
A, =—— - 56
ST [tan U | sin (kzz)]’ (56)
B.= (57)
jo
Using the relation of S. = 0¢./0z and Eq. (52), substituting Egs. (56) and (57) into Eq. (49) yields
szz Uz (%) . d33D3EZ
T.=——= } k. . k.z)| ———. 58
o X [(tan i + sin kzl> cos (k-z) + v-ysin ( _z)] T (58)
From Fig. 1, the external forces can be expressed as
kZEZS Uz1 U2 d33D3EzS
F..=—-ST..,= 59
2= S0 = <tan k. " sin kzl> e, >
szzS Uz1 [%%) d33D3EzS
Fp=-ST.|.., =— _ . 60
2 2l jo % <sm k.l tan kzl> el (60)

The voltage and current of the piezoelectric ceramic hollow cylinder resonator in longitudinal
vibration can be obtained:

133 = jcoD377:a2, (61)

1
V3=/ E;dz. (62)
0
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Substituting Eq. (58) into Eq. (47) and then into Eq. (62) yields

| d31 \ dyz E. dy; +d E.
Vs = — X [1 + <d33 + 31> 33T ~:| D3l + M(Uﬂ + v:). (63)
€33 nj &3 Jwes;
Substituting Eq. (61) into Eq. (63) yields
I3z = joCo. V3 — N33(v-1 + v2). (64)

Here,
_ Seis
[+ (day + ds1 /n)dss E- 6]
where Cj, is called the equivalent clamped capacitance of the equivalent longitudinal vibration of
the hollow cylinder in coupled vibration,
Nas = (d33 + d31 /n)E.S _ (s + d31/n)S’

I+ (dss + d31 /m)ds3 E- [el] 1(s5; + s15/m)

where N33 is defined as the equivalent electro-mechanical conversion coefficient of the ceramic

cylinder resonator in coupled vibration. From the above analysis, Egs. (59) and (60) can be
rewritten as

Fo— pSV- N3 4 N3
jsink.l  joCp. joC,

C()z

z ™

) k.l
) (021 + v2) + jpSV.tan <7> U1 + N33 Vs, (65)

SV. N? N? _ k.l
F ( porz  Nas |, V33 ) (V21 + v2) + jpSV-tan <—> v+ N33 Vi (66)

27 \§sink.l  joCp.  joC, 2
Here,
Sel, (ds3 + ds1/n) < dx3
C, = 33 X = Co. 1+;n>, F' = F.1 + F3.,
’ 1[1 + (d33 + d31/l’l)d33Ez/£§;] d31/l’l 0 ds; 2l ! 3
Sd31Ez/l’l

Fly = Fo + Fa., F3. = x Vi, S=mnd—b).

1[1 + (d33 + ds; /}’l)d33EZ/83T3]

C, and F3, are caused by the coupling between the radial and longitudinal vibrations in the hollow
cylinder. From Egs. (64)—(66), the equivalent circuit of the equivalent longitudinal vibration of the
piezoelectric ceramic hollow cylinder in coupled vibration can be obtained as shown in Fig. 3. In

Z7 Z1

o 3 — o
Va1 V22
Zn
I C
33 p
FZl H FZZ
I V3 -Coz
Coz

1:N33

o 0

Fig. 3. Equivalent circuit of the longitudinal vibration of the piezoelectric ceramic hollow cylinder in coupled vibration.
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the figure, Z.; = jpSV. tan (k.l/2),Z., = pSV./jsin (k.). It can be seen that it is different from
the traditional one-dimensional equivalent circuit of a slender piezoelectric ceramic rod that an
additional capacitance is created. The additional capacitance is resulted from the coupling
between the longitudinal and the radial vibrations in the hollow cylinder.

2.3. Equivalent circuit of the piezoelectric ceramic hollow cylinder in coupled vibration

In practical cases, the piezoelectric ceramic hollow cylinder is excited by an external alternating
electric signal that is in the direction of the longitudinal axis. As is discussed above, since the
longitudinal and the radial dimensions of the cylinder are comparable, when the piezoelectric
ceramic hollow cylinder is excited electrically, it will experience a complex coupled vibration, and
this coupled vibration is composed of the equivalent radial and longitudinal vibrations. Let the
current of the hollow cylinder resonator in coupled vibration be I3. From the above analysis,
following relation can be obtained:

I = Iy + L. (67)

From the above analysis and Eq. (67), the equivalent circuit of the piezoelectric ceramic hollow
cylinder in coupled vibration can be derived as shown in Fig. 4.

It can be seen that the vibration of a piezoelectric ceramic hollow cylinder with comparable
radial and longitudinal dimensions is a very complex coupled vibration. However, when its
dimensions satisfy certain conditions, the coupled vibration can be simplified to some simple
vibrations. For example, when the piezoelectric ceramic hollow cylinder becomes a slender rod,
that is to say, when the longitudinal length is far larger than its radial radius, we have /> a. In this
case, the mechanical coupling coefficient # becomes infinity. And therefore, we have the following
equations:

SE d33 d31 - 1 1
R I e — )
[33 noel n sE(1—k%)  sD
V.= (E-/p)"* = [1/(sp)]"/%. (69)
Zy Via

Zy V2l

Zz V. .
—-———&)——Zz—o FZ]
_ |
1:N33

Fig. 4. Equivalent circuit of the piezoelectric ceramic hollow cylinder resonator in coupled vibration.
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In Eq. (68), k3; = d3,/(s5¢el}), kas is just the electro-mechanical coupling coefficient of the
piezoelectric ceramic slender rod polarized in the longitudinal vibration. In another case, when the
thickness of the cylinder is much less than its radius, we have /<a. In this case, the mechanical
coupling coefficient n becomes zero; the following equations can be obtained:

E | E
ST+ S13n 1

Eﬁ = = ,
’ (Sﬁ - 31152)(51151 + 51152 + 25‘153”) st (1 — "%2)

(70)

) 1 1/2

V= (E/p)"? = [7} : (71)
’ ' stp(l =)

It can be seen that in this case the coupled vibration of the hollow cylinder becomes the plane

radial vibration of a thin piezoelectric ceramic ring.

3. The resonance frequency equations of the piezoelectric ceramic hollow cylinder in coupled
vibration

To analyze the frequency characteristics of the piezoelectric ceramic hollow cylinder resonator
in coupled vibration, the frequency equation of the resonator must be derived. In general cases,
the frequency characteristics are studied when the vibrator is free from external forces. From
Fig. 4, when the cylinder vibrates freely, the external forces can be ignored. In this case, we have

Fi=Fy2=0, F,=F,=0. (72)

Using Eq. (72), the admittance of the piezoelectric ceramic hollow cylinder resonator in coupled
vibration can be obtained as the following form:

_ L ity
£ £

Here, Y3, and Y33 are the equivalent electric admittances of the piezoelectric ceramic hollow

cylinder resonator in equivalent radial and longitudinal vibrations, respectively. For the
equivalent radial vibration, its equivalent admittance Y3; can be derived as

Y3

= Y31+ Y3s. (73)

. )
Y3 :Jw8133S X {1 - (k,/;)2 + (klla)zaz 2
 Lah(ea) — b (kDY (B) — Y(@)] + [aY1(ka) — DY (K, D)]IJ () — J(B)] (74)

J(@)Y(b) — J(b) Y (a)

where J(a) = J(X)|y—q, J(b) = J(X)|y—p, Y (@) = Y(X)|\—g> Y () = Y(¥)|,—p, J(x) and Y(x) are two
introduced functions, their expressions are

J(x) = [k Jo(krx) — 2J1(kpx) /XI(1 — vi2 — 2vizn) /(1 + vi2) + k:Jo(k,x), (75)
Y(x) = [k, Yo(krx) — 2Y 1 (kyx)/x])(1 — via — 2vi3n) /(1 + vi2) + &, Yo(k, ). (76)
In Eq. (74),
(K)? = 2d51(ds) + nds3)

= T (.E E E
e33(87) + ST, + 28731)
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k[g is defined as the electro-mechanical coupling coefficient of the equivalent radial vibration of the
cylinder in coupled vibration. It can be expressed as the following form:

1 —n/ls
N2 7.2
(k)" =Ky x 1= 2 /(1 — vio)

In this equation, k; = 2d3, /[e3;(s; + sf,)]. &, is the electro-mechanical coupling coefficient of the

(77)

piezoelectric ceramic thin ring or plate in plane radial vibration. 133 = —d3;/d33,vi2 =
—sE /sE,vis = —sE /sE. For the equivalent longitudinal vibration, its equivalent admittance
Y33 is
Ly joSel, 1 — (k)
Y = 22 _JooEs (k33) (78)

2 1 — (k) *tan (k-1/2)/(k-1/2)
In Eq. (78),
R e
&35 (853 + 573/1)

and k%, is the equivalent longitudinal electro-mechanical coupling coefficient of the hollow
cylinder resonator in coupled vibration. It can be rewritten as

11— }v31 / n
ki) = k3 x ——1= 79
(k33) 3T 2y /n (79)
where k3; = d3;/e13s5, ka; is the electro-mechanical coupling coefficient of the slender piezo-
electric ceramic element in longitudinal vibration, and v3; = —s%, /sf;. When the admittance of the

hollow cylinder resonator has a maximal value, the resonator will resonate. Therefore, the
resonance frequency equations for the piezoelectric ceramic hollow cylinder resonator in coupled
vibration can be obtained from Egs. (74) and (78):

1 — (Ky3)* tan (k.1/2)/(k-1/2) = 0, (80)

J(@Y()—J(b)Y(a). (81)

Using the expressions of J(x) and Y(x), we can rewrite Eq. (81) as follows:
kyalo(kya) — (1 — vip — 2vizn) /(1 — visn)d (ka)
kbJo(kyb) — (1 — vip — 2vi3n) /(1 — vizn)d (k,b)

_ kaYo(kea) — (1 —via = 2vizn) /(1 — vizn) Yi(kea)

kY o(kb) — (1 —vip — 2vizn) /(1 — visn) Y (k,b)

Egs. (80) and (82) are the resonance frequency equations for the piezoelectric ceramic hollow
cylinder resonator in coupled vibration. It seems that these two frequency equations are similar to
those for the longitudinal vibration of a slender ceramic rod and the plane radial vibration of a
thin ceramic plate. However, they are different. The difference is that for Egs. (80) and (82), they
are not independent of each other, but are correlated by the mechanical coupling coefficient.

In Egs. (80) and (82), when the geometrical dimensions and the material parameters of the
longitudinally polarized piezoelectric ceramic hollow cylinder are given, the unknown quantities
are the angular frequency and the mechanical coupling coefficient. Therefore, from these two
equations we can get the resonance frequencies of the hollow cylinder in coupled vibration. Since

(82)
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the resonance frequency equations are transcendental equations with two unknowns, it is difficult
to find the solutions by an analytic method. Therefore, numerical methods are used. The
procedures to solve the frequency equations are as follows: First, by assigning a value of the
mechanical coupling coefficient, from Egs. (80) and (82), two frequencies f{ and f; can be
obtained. Repeat this procedure by varying the value of the mechanical coupling coefficient until
/{ and £ become equal. In this case, the mechanical coupling coefficient and the frequency are the
solutions to the frequency equations (80) and (82). In practical cases, the frequency equations are
solved using mathematical softwares, such Mathematica or Matlab.

From the computed results it can be seen that when the geometrical dimensions and the
material parameters of the piezoelectric ceramic hollow cylinder are given, for a certain
vibrational mode, such as the fundamental mode, there exists two groups of solutions that are
noted as f,,n. and f.,n.. From the above analysis, considering the practical vibrational
characteristics, it can be seen that these two groups of solutions represent the equivalent
longitudinal vibration and the plane radial vibration of the hollow cylinder in coupled vibration,
respectively. The frequencies f, and f; are the resonance frequencies of the equivalent plane radial
vibration mode and the longitudinal vibration mode of the hollow cylinder when the mechanical
coupling between the radial and the longitudinal vibrations and the piezoelectric effect are
considered. From the analysis and the computed results, it can also be seen that when the height is
much less or larger than the radius of the hollow cylinder, the computed frequencies f, and f. are
far away from each other; this is consistent with the measured results for a longitudinally
polarized piezoelectric ceramic slender rod (/>a) or a thin disk (/<a). In these cases, the
mechanical coupling between the radial and the longitudinal vibrations is weak; the vibration of
the resonator can be regarded as decoupling, such as the one-dimensional longitudinal vibration
of a slender ceramic rod or the plane radial vibration of a thin ceramic plate. However, if the
height is comparable with the radius of the hollow cylinder, the resonance frequencies f, and f. are
also comparable; in this case, the mechanical coupling is intense, and the vibration of the hollow
cylinder is a complex coupled vibration.

4. Experiments

The resonance frequencies of the piezoelectric ceramic hollow cylinder resonators are measured
to test and verify the proposed theory for the analysis of the hollow cylinder resonator in coupled
vibration. The piezoelectric ceramic material used here is an equivalent of PZT-4 that is made in
China. The standard material parameters are used in the design and calculation. The material
parameters are: p = 7500 kg/m’>, k, = 0.58, k33 = 0.70, 55 = 12.3 x 10712 m?/N, &, = —4.05 x
1072 m?/N, sf =-531x 1072 m?/N, 55 =155%x10"2m?/N, d5 = —123 x 10712 C/N,
dy3 = 496 x 10712 C/N, &I} /eg = 1300. The resonance frequencies of the piezoelectric ceramic
hollow cylinder in coupled vibration are measured using HP 4294 A precision impedance analyzer.
The geometrical dimensions, the computed resonance frequencies, and the measured results are
shown in Table 1, where f, and f. are the computed radial and longitudinal frequencies of the
hollow cylinder in coupled vibration and f,,, and f.,, are the measured results. For comparison, the
resonance frequencies /1, and f|, that are computed from one-dimensional theory are also given in
the table.
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Table 1

Calculated and measured resonance frequencies for the piezoelectric ceramic hollow cylinder in coupled vibration

l a b Sir fiz Ir Ve Jrm Som
(mm) (mm) (mm) (kHz) (kHz) (kHz) (kHz) (kHz) (kHz)
5.0 19.0 7.5 42.38 307.47 42.30 314.66 41.57 325.73
6.0 20.0 8.0 40.05 256.23 40.04 256.39 40.17 258.81
6.0 25.0 8.5 34.13 256.23 34.06 263.66 35.05 264.83
5.0 25.0 11.0 30.80 307.47 30.75 315.50 30.36 321.73
8.0 30.0 7.0 32.11 192.17 31.96 196.92 31.43 209.59
8.0 30.0 8.0 30.89 192.17 30.78 197.91 X X

8.0 30.0 9.0 29.73 192.17 29.64 198.93 X X

In this paper, the fundamental vibrational mode of the piezoelectric ceramic hollow cylinder in
coupled vibration is studied. The reason is that in most cases the fundamental vibration mode of
piezoelectric vibrators is widely used. It has high electro-mechanical coupling coefficient,
sensitivity, and low mechanical and dielectric loss. As for the higher vibrational modes, the
analysis is similar to that described in the above sections. For example, for the second vibrational
mode, the second roots of Egs. (80) and (82) must first be found. Then the resonance frequency
for the second vibrational mode of the cylinder resonator can be computed. However, the analysis
for the high vibrational modes is complex. The reason is that the modal interaction must be
considered. For example, for the second vibrational mode, the interaction between the radial
vibration of order one and the longitudinal vibration of order two, the interaction between the
thickness vibration of order one and the radial vibration of order two, and the interaction between
the radial vibration of order two and the longitudinal vibration of order two must be analyzed
and considered at the same time.

As for the frequency error, it is thought that two kinds of errors should be considered. One is
the systematic error; the other is the random error. The systematic error is caused by the
appropriate analysis method, while the random error is determined by many uncertain factors.
Sometimes the uncertain factors are more important, they affect the measured results.
Considering the above facts, the following factors should be taken into account for the frequency
error analysis: (1) The standard material parameters are different from the practical values. An
error of 3%—5% can be caused by this factor. (2) In this method, to simplify the analysis, the
mechanical coupling coefficient is considered as a constant. However, the mechanical coupling
coefficient is different at different positions in the cylinder resonator. (3) The longitudinal and the
radial extensional vibrations in the resonator are supposed. However, for the coupled vibration of
the piezoelectric ceramic hollow cylinder, the shearing and other strains may exist in the
resonator. (4) The analytical method presented in this paper is an approximate one. It can be used
to analyze the resonance frequency of resonators in coupled vibration; however, it cannot be used
to calculate the vibrational displacement distribution.

In order to understand the effect of geometrical dimensions of the piezoelectric ceramic tubes
on the resonance frequency, the effect of the inner radius of the ceramic tube is studied. Using the
coupled vibration theory, the resonance frequency of the piezoelectric ceramic tubes with different
inner radius is calculated by changing the value of the inner radius while fixing the outer radius
and the thickness. The theoretical results are shown in Table 1. It can be seen that when the inner



874 S. Lin | Journal of Sound and Vibration 275 (2004) 859-875

radius is increased while fixing the outer radius and the thickness, the one-dimensional radial
resonance frequency is decreased, while the one-dimensional longitudinal resonance frequency is
unchanged. The radial resonance frequency by the coupled vibrational theory is decreased, while
the longitudinal resonance frequency by the coupled vibrational theory is increased. On the other
hand, it can also be seen that the radial resonance frequency by the coupled vibrational theory is
lower than that by one-dimensional theory, while the longitudinal resonance frequency by the
coupled vibrational theory is higher than that by one-dimensional theory.

From the above analysis, it can be seen that the resonance frequency for a piezoelectric ceramic
resonator in coupled vibration can be calculated by the developed approximate analytical method.
Compared with numerical methods, this method is concise in physical concept, the calculation is
time-saving, and the analysis of the results is simple. However, this method cannot be used to
analyze the vibrational mode function, and therefore, it is difficult to obtain the vibrational
displacement distribution in the resonator in coupled vibration.

5. Conclusions

In this paper, the coupled vibration of a longitudinally polarized piezoelectric ceramic hollow
cylinder is studied. An approximate analytic method is developed to analyze the complex coupled
vibration, and the equivalent circuit for the ceramic cylinder in coupled vibration is obtained. To
sum up the above analysis, the following conclusions can be drawn:

(1) When the mechanical coupling coefficient is introduced, the complex coupled vibration of
the piezoelectric ceramic hollow cylinder can be divided into two equivalent extensional
vibrations: one is the longitudinal vibration, and the other is the plane radial vibration. However,
these two vibrations are not independent of each other. They are correlated by the mechanical
coupling coefficient.

(2) The equivalent circuit for the piezoelectric ceramic hollow cylinder in coupled vibration is
derived. It can be used in the frequency analysis of the hollow cylinder in coupled vibration.

(3) There are two kinds of resonance frequencies for the coupled vibration of the piezoelectric
ceramic hollow cylinder; one is the radial resonance frequency and the other is the longitudinal
resonance frequency. These two frequencies are different from those from one-dimensional
theory.

(4) In general cases, the vibration of the hollow cylinder with comparable dimensions is a
complex coupled vibration. However, when the geometrical dimensions satisfy certain conditions,
the vibration can be regarded as one-dimensional vibration, such as the longitudinal vibration of a
slender ceramic rod, or the radial vibration of a thin piezoelectric ceramic plate.

(5) In this paper, the shearing strains and torsion are ignored and the vibration of the hollow
cylinder is assumed to be a coupled one of two equivalent extensional vibrations.

(6) The method is simple and the resonance frequencies obtained are in good agreement with
the measured results.
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